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FRESH LOOK By STEPHEN J. MILDENHALL 

Bailey Simon Minimum Bias Reexamined, Part 2
Actuarial Review introduces a new column, Fresh Look, that aims to reassess core areas in actuarial science with more current 

tools and practices. Part 1 appears in Actuarial Review November-December 2020.

Development
In a GLM, an observation’s mean value 

is a function of a linear combination 

of covariates, and the observation is 

sampled from an exponential family 

distribution. The parameters are deter-

mined using maximum likelihood. The 

function linking the mean domain to the 

linear domain is called the link function, 

customarily denoted g.

Exponential family distributions 

are assumed to be nondegenerate. They 

are parameterized by a canonical pa-

rameter θ that is a function of the mean, 

and which we will identify in a moment. 

Most importantly, their density (or 

probability mass function) factors as

f(y; θ) = c(y)b(θ)eyθ,

with symmetric roles for the observa-

tion y and parameter θ. Both c and b are 

non-negative functions. The factoriza-

tion reflects the dual meaning of the 

density: It is the probability of observing 

y if the true parameter is θ as well as the 

likelihood of the parameter θ given an 

observation y.

Since b is non-negative, we can 

write b(θ) = e-κ(θ) on the support of f, giv-

ing f(y; θ) = c(y)eY θ-κ(θ). It follows that the 

log likelihood of θ is l(y; θ) = log(c(y)) + 

yθ − κ(θ). Differentiating with respect 

to θ and setting equal to zero shows the 

maximum likelihood estimator (MLE) 

of θ given y solves the score equation y – 

κ'(θ) = 0. Given a sample of independent 

observations y
1
, … , y

n
, the MLE solves 

y̅ – κ(θ) = 0, where y̅ is the sample mean. 

Thus, the mean is a sufficient statistic for 

θ in an exponential family.

If a random variable Y has an expo-

nential family distribution with density 

f, then it has a cumulant generating 

function K(t) := logE[etY]=𝜅(t+𝜃)−𝜅(𝜃). 

The mean of Y is given by K '(0)=𝜅'(𝜃)=𝜇, 

which identifies the relationship be-

tween 𝜇 and 𝜃. 𝜅'(𝜃) is often denoted 

τ(θ). The variance of Y is given by Κ"(0) 

= κ"(θ) = τ'(θ). By assumption, expo-

nential family distributions are non-

degenerate and therefore have a strictly 

positive variance. Three important 

conclusions follow:

1. That Κ is a convex function, and 

hence l is concave ensuring a 

unique maximum likelihood esti-

mate.

2. That τ is increasing and hence 

invertible. 

3. This implies that the variance of Y 

is a function of its mean.

The third conclusion, the mean-

variance relationship, is captured by the 

variance function, V(𝜇)=𝜅″(𝜏-1 (𝜇))=1/

(𝜏-1)'(𝜇) (chain rule).

If we start with a variance func-

tion defined on a mean domain we can 

work backwards, solving two differential 

equations, to determine a cumulant 

generating function and hence a unique 

exponential family distribution with that 

variance function and domain. V only 

determines the distribution uniquely 

within the exponential family, not 

within all distributions. For example, kX 

for any X with E[X]=1 and Var(X)=1 has 

V(𝜇)=𝜇2, but the only exponential fam-

ily distribution with variance function 

V(𝜇)=𝜇2 is the gamma (with a different 

parameterization).

It is possible to show that using the 

exponential family distribution with 

variance function V is equivalent to 

making no assumptions other than the 

mean-variance relationship. Techni-

cally, the exponential family has mini-

mal Fisher information. This is a very 

reassuring fact for the modeler, who 

must specify some distribution to build 

a statistical model necessary to evaluate 

Bailey and Simon’s criteria. But making 

a choice is fraught: what evidence backs 

it up?

The actuary knows from the physi-

If we start with a variance function defined on a mean 

domain we can work backwards, solving two differential 

equations, to determine a cumulant generating function 

and hence a unique exponential family distribution with 

that variance function and domain.
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cal, economic and contractual opera-

tion of insurance that a reasonable V 

will fall between a linear and a quadratic 

function. Using an exponential family 

distribution can test various alternatives 

in this range while making no additional 

assumptions. And the story gets better. 

It turns out that every 1<p<2 determines 

an exponential family distribution with 

V(𝜇)=𝜇p, called a Tweedie distribution. 

Tweedie distributions are ideal for mod-

eling insurance losses because they are 

compound Poisson distributions with 

a gamma severity (the identification is 

made by solving the differential equa-

tions alluded to above and identifying 

the resulting cumulant generating func-

tion). They take non-negative values and 

are continuous except for a probability 

mass at 0. As p approaches 1 from above 

(p↓1), the Tweedie approaches a Pois-

son, and as p approaches 2 from below 

(p↑2), a gamma.

Now consider the fourth crite-

rion: chance. Let’s model Y using an 

exponential family distribution with 

the identity link function. Given an 

observation y in a cell with fitted mean 

𝜇, how should we evaluate whether the 

difference y−𝜇 “could reasonably be 

caused by chance”? The residual error, 

y−𝜇, lacks scale and context. The theory 

of linear models suggests various stan-

dardized residuals, such as the Pearson 

residual (y−𝜇)/√(V(𝜇)). A frequentist 

creates a confidence interval such as 

y±2√(V(𝜇)) for the class mean. If 𝜇 falls 

within the confidence interval, then 

the experience could reasonably occur 

by chance. An obvious problem with 

this approach is the need for it to hold 

simultaneously for many observations, 

which will be vanishingly small.

Alternatively, we can use likelihood 

to evaluate chance. A class rate is likely 

if its likelihood is close to the maximum 

likelihood. In the mean parameter-

ization, the log likelihood becomes 

l(y;𝜇)=log(c(y))+y𝜏-1 (𝜇)−𝜅(𝜏-1 (𝜇)). At the 

maximum of l, the score function

∂l

∂μ
 = 

y−μ
V(μ)

 = 0.

Remember, 𝜅'(𝜏-1 (𝜇))=𝜇 by defini-

tion. Thus the score is a good measure of 

chance. For the most likely parameter it 

is zero. When the score is small the rate 

𝜇 is reasonably likely, but when it has a 

large absolute value, l falls off quickly 

from its maximum value and 𝜇 is much 

less likely. Although dividing by the 

variance rather than standard deviation 

seems odd from a classical statistics per-

spective, it makes sense when consider-

ing likelihoods.

Finally, we need an overall assess-

ment of model fit that avoids arbitrary 

choices. We can create one from the 

likelihood function. We can compare 

the model-constrained likelihood with 

an unconstrained, saturated model 

likelihood to get a measure called model 

deviance. Since we already know the 

maximum likelihood estimate for 𝜇 is y, 

the deviance will be

d(y;𝜇)=2(l(y;y)−l(y;𝜇))≥0.

The factor of 2 is included to ensure 

agreement with the normal distribution. 

Since 𝜕d/𝜕𝜇=-2𝜕l/𝜕𝜇 we see

d(y;𝜇)=2∫
𝜇

y

 
y−m

V(m)
 dm.

The limits of integration are chosen 

so that d has the correct derivative, forc-

ing 𝜇 on the bottom, and d(y;y)=0 forc-

ing y on top. Notice that the nuisance 

log(c(y)) term in l disappears in d.

What is the deviance for a Tweedie, 

V(𝜇)=𝜇p? For p≠1,2, simply integrate:

d(y;μ)

2
 = ∫

𝜇

y

 
y−m

mp
dm = 

ym-p+1

1−p
 − 

m-p+2

2−p
 |

𝜇

y

 

= − 
y2−p

(2−p)(p−1)
 + 

yμ1−p

p−1
 + 

𝜇2−p

2−p
 .

The density of the exponential 

family can be expressed in terms of the 

deviance as

f(y;𝜇) = c
0
 (y)exp {− 

d(y;μ)

2 }
where c

0
 (y)=c(y)exp(l(y;y)). It is an easy 

exercise to check that when V(𝜇)=1 the 

deviance is (y−𝜇)2, and so the corre-

sponding exponential family distribu-

tion is the normal. (Exercise: Work 

out which distribution corresponds to 

V(𝜇)=𝜇.)

To summarize: we can fit a GLM 

using maximum likelihood or, equiva-

lently, using minimum deviance. The 

deviance provides a measure of model 

fit customized to each exponential 

distribution family and can be used 

to compare models using that error 

distribution. Scaled differences in devi-

GLMs encompass a wide range of model forms. They 

are much more flexible than normal-error general 

linear models because they separate the linearizing 

transformation, the link function, from the error 

distribution. A linear model uses the same function to 

linearize and to stabilize the variance.
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ance have an asymptotic χ2 distribution. 

Other methods are needed to choose 

between models using different error 

distributions. Deviance generalizes the 

fact that maximum likelihood for the 

normal is the same as minimum square 

error.

GLMs encompass a wide range 

of model forms. They are much more 

flexible than normal-error general 

linear models because they separate the 

linearizing transformation — the link 

function — from the error distribution. 

A linear model uses the same function 

to linearize and to stabilize the variance. 

Linear, logistic and Poisson regressions, 

and analysis of variance are all special 

cases of GLMs.

Suppose the linear predictor for 

a unit (observation) y is specified as 

𝜂=x𝛽, where x is a vector of covariates 

and 𝛽 is a parameter vector, and the 

mean of y is linked to 𝜂 by g(𝜇)=𝜂. Then 

the log likelihood function becomes 

l(y;𝜇)=log(a(y))+y𝜏-1 (g-1(x𝛽)) − 𝜅[𝜏-1 (g-1 

(x𝛽))]. Therefore, using the chain rule, 

the score for 𝛽
i
 is given by

𝜕l

𝜕𝛽
i

 = 
𝜕l

𝜕𝜃
 
𝜕𝜃
𝜕𝜇

 
𝜕𝜇
𝜕𝜂

 
𝜕𝜂
𝜕𝛽

i

 =( y−𝜇
V(𝜇)) 1

g'(𝜇)
 x

i
.

The decomposition of the score 

reflects the components of the GLM. 

(See Figure 1.)

When the linear model is a two-

way classification, the score equations 

𝜕l/𝜕𝛽
i
=0 give the famous Bailey mini-

mum bias iterations, only substituting a 

variance-adjusted (y−𝜇)/V(𝜇) bias mea-

sure in place of the normal model’s y−𝜇. 

While not recommended for production 

work, the iterative solution is easy to im-

plement in a spreadsheet, providing an 

excellent way to test your understanding 

and confirm results from R glm or SAS 

proc genmod or other implementa-

tions—see the example below.

Parameters determined by solving 

a minimum bias iterative scheme gener-

ally agree with the maximum likelihood 

estimates of a GLM with some variance 

function, even when the scheme is 

formulated without an explicit statisti-

cal model. The situation is analogous to 

Mack’s identification of the stochastic 

model underlying the chain-ladder 

method. Before Mack, we happily 

squared triangles without knowing the 

underlying assumptions. But knowing 

the implied statistical model is an essen-

tial part of assessing whether the model 

is appropriate for its intended use.

Examples
Here are two simple examples which 

capture the essence of the modeling 

problem. Assume that each cell con-

tains the same number of exposures 

and model using an exponential family 

distribution with variance function 

V(𝜇)=𝜇p.

The first example is a two-way 

classification, with each level taking two 

values. You can think: youthful operator 

yes/no and prior accidents yes/no. The 

observations for no/no, no/yes, yes/no, 

yes/yes are y
0
=1, y

1
=2, y

2
=3, and y

3
=7. The 

linear model has means 𝛽
0
, 𝛽

1
, 𝛽

2
 and 

𝛽
1
+𝛽

2
−𝛽

0
 (equivalently, 𝛽

0
, 𝛽

0
+𝛽

1
, 𝛽

0
+𝛽

2
 

and 𝛽
0
+𝛽

1
+𝛽

2
).

The second is a linear regression, 

with covariate taking values 0, 1, 2 and 

outcomes 1, 2 and 4.

In both cases it is clear the model 

does not fit perfectly. How should the 

“bias” be apportioned between the 

classes? The appropriate bias is vari-

ance-adjusted, (y−𝜇)/V(𝜇).

In the first model the bias for each 

cell has the same absolute value b, 

and is split b,-b, -b,b, to achieve bal-

ance by class and in total. In the linear 

model it will be b,-2b,b, achieving a 

covariate-weighted analog of balance 

(𝜕𝜂/𝜕𝛽
1
=0,1,2 for the three observa-

tions). The value of b depends on V, i.e., 

on p, reflecting the fact there are many 

balanced models.

To find a specific solution, set up 

a spreadsheet as shown below and 

use Solver to minimize the deviance 

Figure 1

Observation
Canonical 

parameter

Mean  

parameter

Linear 

model

y
~

Exponential 
family

𝜃
𝜏 = 𝜅'

V(𝜇) = 𝜏'(𝜏-1 (𝜇)) 𝜇
g

Link function 𝜂=x𝛽

𝜕l

𝜕𝜃
 = y – κ'(𝜃) 

κ'(𝜃) = 𝜇

𝜕𝜃
𝜕𝜇

 = 
1

V(μ) 𝜕𝜇
𝜕𝜂

 = 
1

g'(𝜇)

𝜕𝜂
𝜕𝛽

i

 =x
i



CASACT.ORG      JANUARY-FEBRUARY 2021 ACTUARIAL REVIEW 49

(computed in the Development section) 

over 𝛽
i
. The tables show the solution 

for p=1.6. Solver will readily handle 

the problem because the deviance is a 

well-behaved, concave function with a 

unique maximum. You could also use 

the minimum bias iterations, or mimic 

the GLM iteratively re-weighted least 

squares algorithm. All of these are easy 

to implement in Excel. It is worth noting 

that the solutions are maximum likeli-

hood parameter estimates for a density 

that you can’t actually write down in 

closed form!

Exercise: What happens to the fit as 

you vary p? Why? (See Figure 2.)

It’s always good to double check 

your work. The R code below reproduces 

the Excel Solver solution.

library(tidyverse)
library(statmod)

# two way classification
df = tibble(a=c(1,0,0,-1), 
b=c(0,1,0,1), c=c(0,0,1,1), 
y=c(1,2,3,7))
m1 = glm(data=df, 
family=tweedie(var.power=1.6, 
link.power=1), y~a+b+c−1)
summary(m1)

# Coefficients:
#  Estimate Std. Error t value 
Pr(>|t|)
# a 0.91075  0.50969 1.78687 
0.32481
# b 2.42873  1.04994 2.31320 
0.25977
# c 3.92350  1.38479 2.83328 
0.21600
#
# Residual deviance: 0.3086021 
on 1 degrees of freedom

# linear regression
df2 = tibble(x=c(0,1,2), 
y=c(1,2,5))
m2 = glm(data=df2, 
family=tweedie(var.power=1.6, 
link.power=1), y~x)
summary(m2)

# Coefficients:
#       Estimate Std. Error t 
value Pr(>|t|)
# (Intercept) 0.939632  
0.342186 2.74597 0.22233
# x      1.684947  0.525511 
3.20630 0.19247
#
# Residual deviance: 0.1422328 
on 1 degrees of freedom

Lessons
GLMs allow actuaries to model with 

an error distribution that incorporates 

known facts about the loss generat-

ing process, but overlays no further 

arbitrary assumptions. The distribution 

is specified by the relationship between 

the mean and variance. It provides a 

variance-adjusted score, or measure of 

bias, that satisfies the balance equations 

and a quantification of model fit. Model 

parameters can be estimated using an 

efficient algorithm, implemented in R 

and Python, or from first principles in 

a simple spreadsheet. GLMs naturally 

extend Bailey and Simon’s four crite-

ria, giving them more exact meaning. 

Since GLMs assume the input data is 

representative, unbiased and credible, 

the modeler must always exercise good 

judgment. Nevertheless, GLMs provide 

an excellent framework that the actuary 

can use to build fair and transparent 

rates. Long live statistics and rational, 

fact-based government! ●

Stephen J. Mildenhall, FCAS, CERA, PhD, 

ASA, MAAA, is a consultant with Convex 

Risk LLC and a member of the CAS Board 

of Directors.

Figure 2.

x
i0

x
i1

x
i2

y
i 𝛽 𝜇 V(𝜇) Score b d(y;𝜇)

1 0 0 1 0.91075 0.91075 0.86107 0.10365 0.00880

0 1 0 2 2.42871 2.42871 4.13620 -0.10365 0.04917

0 0 1 3 3.92352 3.92352 8.91006 -0.10365 0.10996

-1 1 1 7 5.44148 15.03651 0.10365 0.14068

0.30860

Constant x
i

y
i 𝛽 𝜇 V(𝜇) Score b d(y;𝜇)

1 0 1 0.93963 0.93963 0.90518 0.06669 0.00389

1 1 2 1.68495 2.62458 4.68269 -0.13338 0.09586

1 2 5 4.30952 10.35349 0.06669 0.04248

0.14223


