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EXPLORATIONS BY JOHN A. MAJOR, ASA

Bayesian Dragons: A Cautionary Note
“Here Be Dragons”

— Ancient map label for unexplored 

regions

T
his is the story of how I discov-

ered moment-busting monsters 

lurking in the unexplored regions 

of Bayesian predictive distribu-

tions. Don’t get me wrong. I’m 

a believer. I used to be a skeptic, but 

recently I saw the light. Bayesian meth-

ods, and Markov Chain Monte Carlo 

(MCMC) technology in particular, now 

have a special place in my toolbox. But 

on my journey to the light, I stumbled 

upon some interesting facts that, it 

seems, are not widely appreciated.

Background
The task set out before me was to 

reproduce the fit of the leveled chain 

ladder (LCL) model to the “Illustrative 

Insurer” ultimate incurred losses in 

Meyers [2015]. Readers unfamiliar with 

Bayesian methods are urged to read 

Meyers’ monograph for background and 

literature references. The LCL model on 

this data consists of 29 parameters and 

the likelihood function is still simple 

enough to be able to program directly. 

Numerical methods sufficed to find the 

maximum likelihood estimate (MLE) of 

the parameters. 

The parameters, of course, are 

not known precisely; they are simply 

estimated and there is some uncertainty 

around them. One way to express this 

uncertainty is to generate a predictive 

distribution. In effect, one mixes the 

various possible lognormal distributions 

implied by a range of plausible model 

parameter values.

My challenge was to get estimates 

close to Meyers’ using methods faster 

than MCMC. My weapon of choice was 

importance sampling [Rubinstein & 

Kroese, 2011]. It failed miserably, but in 

an interesting way. No matter how many 

samples I drew (and I went into tens 

of millions), the estimator of the mean 

ultimate loss would not stabilize. The 

central limit theorem (CLT) seemed not 

to apply.

This got me thinking … when does 

the CLT not apply? One failure mode 

is when the target random variable 

does not have a finite variance. Could 

it be that the variance of the predictive 

ultimate loss in the LCL model did not 

exist?

Eventually, I traced my problems 

to the curse of dimensionality. Even 

a 29-dimensional problem, modest 

though it might be compared to the 

thousands or even millions of dimen-

sions in some industrial-strength 

statistical models, was too much for 

importance sampling. 

Yet my initial speculation continued 

to haunt me. Eventually, I found out I 

was right ... sort of.

Bayesian Dragons in a Simple 
Model
Consider the following simple model, 

basically a one-cell triangle. There is one 

accident year with parameter µ and one 

development period with parameter ϖ. 

The ultimate loss is a random variable Z 

= exp(X) where X has a normal distribu-

tion with mean µ and variance ϖ. 

Given particular parameter values, 

the expected value of Z can be readily 

calculated as exp(µ + ϖ/2).

Say we impose a flat prior over 

(-∞,∞) on µ and another flat prior 

over (0,∞) on ϖ. Say also we have n>1 

independent and identically distributed 

observations zi
. The likelihood can be 

written down easily; it is the indepen-

dent multivariate normal formula. With 

flat priors, the posterior distribution is 

the same formula, with a restriction that 

ϖ>0 and with a normalizing constant:

Say the data exhibit mean M and 

variance V>0 (the case V=0 leads to a 

singular solution at µ = M). Rewrite [1] as

where the K
i
 are constants not 

involving the parameters. This is the 

product of an inverse gamma in ϖ, and, 

conditional on ϖ, a normal in µ. There-

fore, the predictive distribution is proper 

and K
2
 > 0.

Proposition: Assume the model 

described above with the posterior 

distribution given by [2] with V>0. The 

predictive mean loss is given by the fol-
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where the Ki are constants not involving the parameters. This is the product of an inverse gamma in ϖ, 
and, conditional on ϖ, a normal in µ. Therefore the predictive distribution is proper and K2 > 0. 
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and this integral diverges. Therefore the predictive mean does not exist. (So neither does the variance.) 
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and this integral diverges. Therefore the predictive mean does not exist. (So neither does the variance.) 
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lowing expression:

and this integral diverges. Therefore 

the predictive mean does not exist. (So 

neither does the variance.)

The formal proof of this, to appear 

in another paper, is omitted here. Notice 

that the expression [3] can be recognized 

as the expectation of exp(k*ϖ) where ϖ 

is distributed as an inverse gamma. Such 

expectations do not exist for the inverse 

gamma. It should also be pointed out 

that with the usual conjugate reference 

priors, the predictive distribution of a 

lognormal random variable is log-t, and 

the log-t has no finite mean.

What if a 1/ϖ prior were used 

instead of a flat prior on ϖ? The same 

result obtains; it doesn’t help. (Thanks to 

Gary Venter for raising this question.)

It is instructive to examine the 

attempt to calculate expression [3] 

numerically.

Take, for example, the concrete 

values n=11 and V=1 (M doesn’t matter 

up to a constant).

The inverse gamma posterior den-

sity of ϖ (square brackets in [3]), up to a 

constant, is shown in Figure 1.

One might think that truncating 

ϖ at, say, 15, would suffice to estimate 

the value of [3]. After all, this encom-

passes roughly 99.95% of the probability. 

However, see Figure 2. This shows what 

the integrand of [3] looks like. Note: this 

includes the probability density factor.

Evidently, at 15, one is only begin-

ning to see the exponential rise in the 

integrand. And the choice of where to 

truncate, in this example, has a material 

impact on the calculated value, as an 

inspection of the cumulative integrand 

in Figure 3 shows.

LCL’s Potential Dragon
The leveled chain ladder is differ-

ent from this simple model in several 

respects. In particular, the priors on the 

variances are bounded. This is an impor-

tant difference, and it guarantees that 

the predictive mean does indeed exist. If 

they were not bounded, would the LCL 

have the same problem?

Figure 4 shows a “profile” of the 

posterior density f(ϖN
) of the LCL as a 

function of the last development period 

variance ϖ
N

, with all other parameters 

held constant at their MLE values.

By the time ϖ = 4e-05 is reached, 

over 99.99% of the cumulative posterior 

probability has been covered. Yet this is 

still far from the truncation boundary of 

ϖ = 1 that Meyers used.

Figure 5 shows the integrand, i.e., 

the product of posterior density f(ϖ
N

) 

and conditional expected loss for the 

final accident year E[Y
N

|ϖ
N

].

Figure 1: Density of inverse gamma distribution.
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Bayesian dragons in a simple model 

Consider the following simple model, basically a one-cell triangle. There is one accident year with 
parameter µ and one development period with parameter ϖ. The ultimate loss is a random variable Z = 
exp(X) where X has a normal distribution with mean µ and variance ϖ.  

Given particular parameter values, the expected value of Z can be readily calculated as exp(µ + ϖ/2). 

Say we impose a flat prior over (-∞,∞) on µ and another flat prior over (0,∞) on ϖ. Say also we have n>1 
independent and identically distributed observations zi. The likelihood can be written down easily; it is 
the independent multivariate normal formula. With flat priors, the posterior distribution is the same 
formula, with a restriction that ϖ>0 and with a normalizing constant: 
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Say the data exhibit mean M and variance V>0 (the case V=0 leads to a singular solution at µ = M). 
Rewrite [1] as 
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where the Ki are constants not involving the parameters. This is the product of an inverse gamma in ϖ, 
and, conditional on ϖ, a normal in µ. Therefore the predictive distribution is proper and K2 > 0. 

Proposition: Assume the model described above with the posterior distribution given by [2] with V>0. 
The predictive mean loss is given by the following expression: 
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and this integral diverges. Therefore the predictive mean does not exist. (So neither does the variance.) 
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where the Ki are constants not involving the parameters. This is the product of an inverse gamma in ϖ, 
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and this integral diverges. Therefore the predictive mean does not exist. (So neither does the variance.) 
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Figure 3: Cumulative sum of the integrand of Figure 2.
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Figure 2: Integrand for predictive mean ultimate loss.
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Figure 4: Posterior density profile (up to scale factor) as function of last DP variance.
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Figure 5: Contribution to predictive mean ultimate loss.
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Figure 6: Log contribution to predictive mean ultimate loss.
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This graph is nearly isomorphic 

to Figure 4 because the conditional 

expected loss only varies from $3959.63 

to $3959.68 over the range shown.

When the scale is taken out to ϖ = 

1000, an absurdly improbable value, the 

divergence of the predictive mean can 

be seen. This is shown in Figure 6, with 

the y-axis rendered as the log integrand.

If ϖ were not capped and the 

predictive mean were computed by 

integrating over the full (all-parameters) 

posterior, the calculation would indeed 

diverge. However, it is unlikely that any 

MCMC application would ever reach 

the extreme, and extremely improbable, 

ϖ values required. The dragons live in 

unexplored territory.

Unlike the behavior seen in Figure 

3, there is no material difference here 

between bounding ϖ at 0.01, 1, or even 

500. The contribution to the predictive 

mean consists of a small pond at ϖ < 

.00003 and an infinite ocean at ϖ > 500. 

This suggests that when capping ϖ by 

design, the choice of limit is not mate-

rial — in this case. Lack of materiality is 

true of the particular example in Meyers’ 

monograph. We can’t know a priori how 

other triangle data might behave.

A Call for Caution
This argues for caution, or at least cir-

cumspection, when applying numerical 

Bayesian methods to problems involv-

ing the lognormal. Moments may not 

exist, or may be made arbitrary by model 

design choices. Quantiles, on the other 

hand, should be well-behaved.

I don’t mean to pick on the fantastic 

work of Dr. Meyers; his just happens to 

be what led me to this line of inquiry. I 

have seen at least one blog explaining 

MCMC that went right ahead and calcu-

lated the predictive mean of a lognormal 

without even considering the question 

of the existence of the target. In a more 

formal venue, the seminal paper by De 

Alba [2002] seems to exhibit this same 

lack of consideration. 

The literature on stochastic loss 

reserving is large and growing, and a 

significant portion of it addresses Bayes-

ian methods. How many other triangle 

models out there are affected by this 

phenomenon? I don’t know, but the 

question is worth addressing. 
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