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EXPLORATIONS BY GLENN MEYERS

Combining Paid and Incurred Data in a Bayesian MCMC Model

O
ne way to include more data 

into a loss reserve model is to 

use both paid and incurred 

data. Over the years, a number 

of authors have explored this 

idea. See, for example, Quarg and Mack 

(2004), Posthuma et al. (2008) and Ven-

ter (2008). Until recently, I have avoided 

that path because I have been using 

different models for paid and incurred 

data. All this changed when Ned Tyrrell, 

FCAS, showed me how to use the Bayes-

ian MCMC language, Stan, to combine 

different models for paid and incurred 

data. Tyrell’s motivation for doing this 

was that using more data will reduce the 

range of possible outcomes. This article 

shows what happens when we combine 

the CSR and CCL models that are in my 

previous work, Meyers (2015).

Let’s start by specifying my current 

versions of these models.

The Changing Settlement Rate 
(CSR) Model for Paid Losses

1. Let CP
wd

 be the cumulative paid loss 

for a 10 x 10 triangle for accident 

year w and development year d.

2. Let P
w

 be the earned premium for 

accident year d.

3. Let α
w

 ∼ Normal(0, √10) for w = 2,  

…, 10. Set α
1
 ≡ 0.

4. Let βP
d

 ∼ Normal(0, √10) for d = 1,  

…, 9. Set βP
10

 ≡ 0.

5. Let logelr ∼ Normal(0, √10).

6. Let γ ∼ Normal(0, 0.05). 

7. Let aP
i

 ∼ Uniform(0, 1) for d = 1, 

…, 10. Then set (σP
d

)2 = ∑10
i=d

aP
i

. This 

forces σP
1

 < σP
2

 < … σP
10

.

8. Set µP
wd

= log(P
w

 )+logelr +α
w

+βP
d

 

·(1−γ)w−1 for w = 1, …, 10 and d = 1, 

…, 11−w.

9. Then CP
wd

∼ lognormal(µP
wd

, σP
d

)

The expected loss ratio for acci-

dent year, w, after 10 years is given by 

exp(logelr + α
w

 + (σP
10

)2/2) ≈ exp(logelr + 

α
w

) since (σP
10

)2 is generally very small.

While there are any number of 

equivalent ways to specify this model, 

I chose to formulate the model with a 

logelr parameter since many actuaries 

have access to prior information about 

the expected loss ratio for their business. 

They also expect market forces to change 

the expected loss ratio from year to year, 

and the α
w

 parameters allow for these 

changes.

Once the model is coded, the Stan 

software will draw a sample from the 

posterior distribution of the parameters 

logelr, {α
w

}10
w=1

, {βP
d

}10
d=1

, γ and {σP
d

}10
d=1

. Let’s 

refer to this collection of parameters as 

θ
P
. With these parameters, one can cal-

culate any statistic of interest to the actu-

ary, such as the expected outcome and 

the standard deviation of the outcomes.

The Correlated Chain Ladder (CCL) 
Model for Incurred Losses

1. Let CI
wd

 be the cumulative incurred 

loss for a 10 x 10 triangle for acci-

dent year w and development year 

d.

2. Let P
w

 be the earned premium for 

accident year w.

3. Let α
w

 ∼ Normal(0, √10) for w = 2,  

…, 10. Set α
1
 ≡ 0.

4. Let βI
d

 ∼ Normal(0, √10) for d = 1,  

…, 9. Set βI
10

 ≡ 0.

5. Let logelr ∼ Normal(0, √10).

6. Let ρ ∼ β(2, 2) scaled to go between 

-1 and 1, where β(., .) denotes the β 

distribution.

7. Let aI
i

 ∼ Uniform(0, 1) for d = 1, 

…, 10. Then set (σI
d

)2 = ∑10
i=d

aI
i

. This 

forces σI
1

 < σI
2

 < … σI
10

.

8. Set µ
1d

 = log(P
1
) + logelr + βI

d
 for d = 

1, …, 10.

9. Set µI
wd

= log(P
w

 ) + logelr + α
w

 + βI
d

 + 

ρ · (log(CI
w-1,d

) − µI
w-1,d

) for w = 2,  

…, 10 and d = 1, …, 11 − w.

10. Then CI
wd

 ∼ lognormal(µI
wd

, σI
d

)

Again, once the model is coded, the 

Stan software will draw a sample from 

the posterior distribution of the param-

eters logelr, {α
w

}10
w=2

, {βI
d

}10
d=1

, ρ and {σI
d

}10
d=1

. 

 As above, let’s refer to this collection of 

parameters as θ
I
.

A key assumption that we can make 

to combine these models is that the 

logelr and the {α
w

}10
w=1

 parameters are 

the same for both the paid and incurred 

loss models. An additional modifica-

tion, suggested to me by Ned Tyrrell, is 

to drop the assumption that βI
10

 ≡ 0. This 

modification accounts for the fact that 

the case incurred losses recognize the 

further adjustments that could happen 

after the 10th development year.

The Stan software combines the 

paid and incurred models by adding the 

log-likelihoods, ll(θ
P
 |{CP

wd
) and ll(θ

I
 | 

{CI
wd

}). Stan then provides a sample from 

the posterior distribution of θ
P
 and θ

I
 in 

which the parameters logelr and {α
w

}10
w=1

  

are the same in both parameter sets 
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θ
P
 and θ

I 
. One can then calculate the 

statistics of interest for both the paid and 

incurred triangles.

I ran each model for Commercial 

Auto Insurer #353 (The Illustrative In-

surer in Meyers (2015)). Table 1 contains 

the loss estimates and the standard 

deviations for standalone CSR and CCL 

models. Table 2 contains the loss esti-

mates and standard deviations for the 

combined CSR and CCL model.

Note that the standard deviations of 

the estimates for the combined model in 

Table 2 are smaller than the standard de-

viations standalone estimates in Table 1. 

To see how often this happens, I ran the 

combined and standalone models on 50 

loss triangles in each of the Commercial 

Auto (CA), Personal Auto (PA), Workers’ 

Compensation (WC) and Other Liability 

(OL) lines of insurance1 Figure 1 shows 

a histogram of the standard deviation 

ratios for both the CSR and CCL models. 

The results show that the standard devia-

tion is reduced in a clear majority of the 

cases, showing the positive effect of the 

additional data in reducing the uncer-

tainty in the estimates.

While reducing the predictive 

standard deviation of the outcomes is 

desirable, it is not the goal of a sto-

chastic loss reserve model. The goal is 

to correctly predict the distribution of 

outcomes. Following the methodology 

I proposed in Meyers (2015), Figures 2 

and 3 test the predictive distribution on 

the observed outcomes by comparing 

the pp-Plots of the CSR and CCL models 

derived from the combined model with 

the corresponding plots from the stand-

alone models. The CA and OL lines pass 

the test. PA just barely misses, but the 

combined models perform better than 

the standalone models.

For WC, the combined model per-

forms noticeably worse. I am not sure 

why this is the case, but it is worth not-

ing that the difference between the paid 

and incurred losses is noticeably larger 

for WC than for the other lines.

While there are some questions 

that remain to be answered, I believe the 

combined models are worthy of further 

consideration.

The R/Stan scripts for the combined 

and standalone models are on the CAS 

website  along with summary statistics 

for all 200 loss triangles.
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