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actuarialEXPERTISE

EXPLORATIONS By GLENN MEYERS

T
he first time I visited Cape Cod 

was in the summer of 1970. 

We stayed near the Cape Cod 

National Seashore, enjoyed the 

beaches and wandered through 

the shops in Provincetown. Given that 

we were on a graduate student budget, 

we stayed at a campground in a classic 

1960s-style umbrella tent, cooking our 

meals in an old Coleman stove fueled 

by white gasoline — quite Spartan by 

today’s standards, but it worked well for 

us at the time.

Over a decade later, I became 

familiar with the actuarial Cape Cod. A 

prominent loss reserve formula dating 

from the early 1970s was the Born-

huetter-Ferguson method. This method, 

for paid losses, estimates the unpaid 

losses for a given accident year w by 

Earned Premiumw
 • ELR • Expected 

Unpaid Losses

where:

1. The expected unpaid loss is esti-

mated by a standard loss reserve 

method, such as the chain ladder 

method.

2. The expected loss ratio (ELR) is to 

be judgmentally selected by the 

actuary.

When using the Bornhuetter-Fer-

guson method, many actuaries have felt 

the need to back up their judgment with 

a data-driven estimate of the expected 

loss ratio. In response, Hans Bühlmann 

and James Stanard developed a method 

to estimate this expected loss ratio in 

the early 1980s. (See Stanard 1985.) The 

method was so named as it sprang out 

of an actuarial conference held on Cape 

Cod. Over the years, it too has become 

a prominent loss reserve formula in the 

P&C actuary’s toolkit. 

Starting in 1990, statisticians began 

developing the statistical model-

building methodology now known as 

Bayesian Markov Chain Monte Carlo 

(MCMC). Actuaries began looking at it 

in the early 2000s, and by 2005, the CAS 

recognized the potential of this method-

ology for building stochastic loss reserve 
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It was not long after this that I got 

involved with stochastic loss reserve 

modeling with Bayesian MCMC. At first, 

the going was slow as I had a day job. 

But when I retired at the end of 2011, I 

was able to concentrate on it without a 

lot of other responsibilities.

One benefit of my late entry into 

the fray was that the MCMC methodol-

ogy had begun to mature, and there 

was some terrific software that made it 

fairly easy to build new MCMC models. 

As I started modeling the Schedule P 

loss triangles in the CAS Loss Reserve 

Database, I quickly found myself build-

ing models that were different from the 

usual models that actuaries were using. 

This brings up the question: “How do we 

select which model to use?” The purpose 

of this article is to show how to select 

between alternative Bayesian MCMC 

models. We will look at two of the sim-

pler models in the second edition of my 

monograph, “Stochastic Loss Reserving 

Using Bayesian MCMC Models.” These 

models will describe the cumulative 

loss, Cwd
, for accident year w and devel-

opment year d. The first will be a CRross-

classified model by accident year and 

development year. The second will be a 

stochastic version of the actuarial Cape 

Cod model.

The CRoss-Classified (CRC) Model
1. logelr ∼ Normal(-0.4,√10). 

2. α
w

 ∼ Normal(0,√10) for w = 2,...,10. 

Set α
1
 = 0. 

3. β
d
 ∼ Normal(0,√10) for d = 1,...,9. Set 

β
10

 = 0. 

4. a
i
 ∼ Uniform(0,1) for i = 1,...,10. 

5. Set σ2
d
 =Σ10

i=d
 a

i
 for d = 1,...,10. Note 

that this forces σ2
1
 > ... > σ2

10
. 

6. Set µ
wd

 = log(Premium
w

) + logelr + 

α
w

 + β
d
. 

7. Then C
wd

 ∼ lognormal(µ
wd

,σ
d
). 

The Stochastic Cape Cod (SCC) 
Model

1. logelr ∼ Normal(-0.4,√10). 

2. β
d
 ∼ Normal(1,√10) for d = 1,...,9. Set 

β
10

 = 0. 

3. a
i
 ∼ Uniform(0,1) for i = 1,...,10. 

4. Set σ2
d
 =Σ10

i=d
 a

i
 for d = 1,...,10. Note 

that this forces σ2
1
 > ... > σ2

10
 .

5. Set µ
wd

 = log(Premium
w

) + logelr + β
d
. 

6. Then C
wd

 ∼ Lognormal(µ
wd

,σ
d
). 

The difference between the two 

models is that while the SCC model 

forces a common expected loss ratio 

on all accident years, the CRC model 

allows the expected loss ratio to vary by 

accident year. As the prior distributions 

are fairly wide, the expected loss ratios 

are governed mainly by the data for both 

models. 

The numerical examples in Table 

1 in this article are identical to the 

numerical examples in my monograph, 

Meyers (2019), using the illustrative paid 

loss triangle from the commercial auto 

line of business.2 The posterior means 

of the parameters for each model are in 

Table 1. 

Some observations on the param-

eters:

• There are jumps in the {α
w

} pa-

rameters for the CRC model. This 

indicates that loss ratios are varying 

significantly by accident year pa-

rameters. 

• The {β
d
} parameters for the SCC 

model do not gradually increase 

toward zero as the accident year 

matures. For a line of business like 

commercial auto, one would expect 

the upward development of the 

paid losses to gradually approach 

the ultimate loss.

• The {σ
d
} parameters are noticeably 

1 See Section 3.2.4 of the report of the CAS Working Party on Quantifying Variability in Reserve Estimates (2005). 
2 Additional model outputs that are not germane to this article are in the monograph.

Table 1. Posterior Means of 
Parameters

Parameter CRC SCC

logelr -0.3965 -0.4033

α1 0.0000

α2 -0.2541

α3 0.1217

α4 0.2152

α5 0.0149

α6 -0.0343

α7 0.4354

α8 -0.0199

α9 0.2060

α10 0.3435

β1 -1.1999 -1.0897

β2 -0.5751 -0.4926

β3 -0.2825 -0.2155

β4 -0.0954 -0.0170

β5 -0.0628 -0.0439

β6 -0.0170 0.0109

β7 -0.0060 0.0214

β8 -0.0038 -0.0418

β9 -0.0056 -0.1251

β10 0.0000 0.0000

σ1 0.2965 0.4608

σ2 0.2073 0.3691

σ3 0.1334 0.3183

σ4 0.0946 0.2853

σ5 0.0730 0.2579

σ6 0.0576 0.2351

σ7 0.0472 0.2132

σ8 0.0384 0.1887

σ9 0.0300 0.1572

σ10 0.0202 0.1051

https://www.casact.org/pubs/monographs/index.cfm?fa=meyers-monograph08
https://www.casact.org/pubs/monographs/index.cfm?fa=meyers-monograph08
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larger for the SCC model. There re-

mains a fair amount of uncertainty 

in the parameter estimates for the 

later development years in that 

model.

These observations highlight the 

fact that the SCC model is not simply a 

Bayesian MCMC version of the actu-

arial Cape Cod model. The principle 

difference is that the actuarial Cape Cod 

model first estimates the loss develop-

ment factors (which are subject to the 

actuary’s sense of being “reasonable.”) 

The model then estimates the expected 

loss ratio. This is in contrast to the SCC 

which estimates all the parameters si-

multaneously. But as both models have 

a single parameter for the expected loss 

and the same number of development 

year parameters, one should expect the 

less constrained SCC model to have a 

better “fit.” 

So now let’s consider our measure 

of fit. To shorten our notation, let

{θ j} = {logelr j,α j
2:10

,β j
1:9

,σ j
1:10

} 

denote the parameter set from the 

sample of size J from the posterior dis-

tribution of the CRC model. For the SCC 

model, drop the {α j
2:10

} from the {θ j}. 

Given that we now have two mod-

els, we now discuss how we compare 

models using only the upper triangle 

data. Let’s start the discussion with a re-

view of the Akaike Information Criteria 

(AIC). 

Suppose that we have a model with 

a data vector, x = {x
i
}N

i=1
, and a parameter 

vector θ, with p parameters. Let 
^θ be the 

parameter value that maximizes the log-

likelihood, L, of the data, x. Then the AIC 

is defined as 

AIC = 2·p−2·L(x | 
^θ) (1) 

Given a choice of models, the mod-

el with the lowest AIC is to be preferred. 

This statistic rewards a model for having 

a high log-likelihood, but it penalizes the 

model for having more parameters. 

There are problems with the AIC 

in a Bayesian environment. Instead of a 

single maximum likelihood estimate of 

the parameter vector, there is an entire 

sample of parameter vectors taken from 

the model’s posterior distribution. There 

is also the sense that the penalty for the 

number of parameters should not be 

as great in the presence of strong prior 

information. To address these concerns, 

Gelman et al. (2014, Chapter 7) describe 

statistics that generalize the AIC in a way 

that is appropriate for Bayesian MCMC 

models. Here is a brief overview of one 

of these statistics. 

First, given a stochastic model, 

p(x|θ), define the expected log predictive 

density as

• The {σd} parameters are noticeably larger for the SCC model. There remains a fair
amount of uncertainty in the parameter estimates for the later development years in
that model.

These observations highlight the fact that the SCC model is not simply a Bayesian MCMC
version of the actuarial Cape Cod model. The principle difference is that the actuarial Cape
Cod model first estimates the loss development factors (which are subject to the actuary’s
sense of being “reasonable.”) The model then estimates the expected loss ratio. This is in
contrast to the SCC which estimates all the parameters simultaneously. But as both models
have a single parameter for the expected loss and the same number of development year
parameters, one should expect the less constrained SCC model to have a better “fit.”

So now let’s consider our measure of fit. To shorten our notation, let

{θj} = {logelrj, αj
2:10, β

j
1:9, σ

j
1:10}

denote the parameter set from the sample of size J from the posterior distribution of the
CRC model. For the SCC model, drop the {αj

2:10} from the {θj}.
Given that we now have two models, we now discuss how we compare models using only

the upper triangle data. Let’s start the discussion with a review of the Akaike Information
Criteria (AIC).

Suppose that we have a model with a data vector, x = {xi}Ni=1, and a parameter vector

θ, with p parameters. Let θ̂ be the parameter value that maximizes the log-likelihood, L, of
the data, x. Then the AIC is defined as

AIC = 2 · p− 2 · L(x|θ̂) (1)

Given a choice of models, the model with the lowest AIC is to be preferred. This statistic
rewards a model for having a high log-likelihood, but it penalizes the model for having more
parameters.

There are problems with the AIC in a Bayesian environment. Instead of a single maximum
likelihood estimate of the parameter vector, there is an entire sample of parameter vectors
taken from the model’s posterior distribution. There is also the sense that the penalty for the
number of parameters should not be as great in the presence of strong prior information. To
address these concerns, Gelman et. al. (2014, Chapter 7) describe statistics that generalize
the AIC in a way that is appropriate for Bayesian MCMC models. Here is a brief overview
of one of these statistics.

First, given a stochastic model, p(x|θ), define the expected log predictive density as

elpd =
I∑

i=1

log

(∫
p(xi|θ) · f(θ)dθ

)
(2)

where f is the unknown density of θ.
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where f is the unknown density of θ.

If {θ
j
} J

j=1
 is a random sample from 

the posterior distribution of θ, define the 

computed log predicted density as If {θj}Jj=1 is a random sample from the posterior distribution of θ, define the computed
log predicted density as

l̂pd =
I∑

i=1

log

(
1

J

J∑
j=1

p(xi|θj)

)
(3)

Note that if replace {θj}Jj=1 with the maximum likelihood estimate, θ̂, l̂pd is equal to

L(x|θ̂) in Equation 1.

If the data vector, x, comes from a holdout sample, i.e. x was not used to generate the
parameters,{θj}Jj=1, then the l̂pd is an unbiased estimate of elpd. But if the data vector,x,
comes from the training sample, i.e. x was used to generate the parameters, {θj}Jj=1, then we

expect l̂pd to be higher than elpd. The amount of that bias is called the “effective number
of parameters” which we denote by p.

Now let’s consider what is called “leave one out cross validation” or “loo” for short. For
the data point, xi, one might obtain a sample of parameters {θ(−i)} by an MCMC sample
using all values of x except xi. After doing this calculation for all observed data points in
x, one can then use Equation 3 to calculate an unbiased estimate of the epld.

êlpdloo =
I∑

i=1

log

(
1

J

J∑
j=1

p(xi|θj(−i))

)
(4)

Methods to efficiently estimate êlpdloo have been developed. Vehtari, et. al. provide the
most up-to-date approaches that are incorporated in the R ”loo” package.

When comparing two models, the model with the highest êlpdloo should be preferred. For
historical reasons, many prefer to state the results on the deviance scale, which similar to
that of the AIC in Equation 1. This is done be writing

LOOIC ≡ −2 · êlpdloo = 2 · ploo − 2 · l̂pd (5)

Table 2 provides these model comparison statistics for the illustrative triangle. These
statistics strongly favor the CRC model. Moreover, when comparing the statistics for the
models applied to the 50 Commercial Auto loss triangles in Meyers (2019), the CRC model
is strongly favored for all 50 triangles.

Table 2: Model Comparison Statistics

Model êlpdloo ploo LOOIC
CRC 47.80 14.97 -95.60
SCC -5.14 8.75 10.28

An underlying assumption in the Bornhuetter-Ferguson and the Cape Cod models is
that the expected losses for each year is proportional to that accident year’s premium. If is
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expect l̂pd to be higher than elpd. The amount of that bias is called the “effective number
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Now let’s consider what is called “leave one out cross validation” or “loo” for short. For
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Table 2: Model Comparison Statistics
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Methods to efficiently estimate êlpdloo have been developed. Vehtari, et. al. provide the
most up-to-date approaches that are incorporated in the R ”loo” package.

When comparing two models, the model with the highest êlpdloo should be preferred. For
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Cod models is that the expected loss 

for each year is proportional to that ac-

cident year’s premium. However, if that 

is known not to be the case, an actuary 

can adjust the premium to the level 

appropriate for that accident year. A 

near-perfect way to do this is to first run 

the CRC model and then multiply the 

premium for accident year w by exp(ᾱ
w

), 

where ᾱ
w

 is the posterior mean of the 

{α
w

} parameters obtained by fitting the 

CRC model. 

The model comparison statistics for 

the illustrative triangle with this adjust-

ment are in the first row of Table 3. They 

indicate that the adjustment leads to a 

strongly better fit. This is also true for the 

other 49 commercial auto triangles in 

the monograph. However, note that the 

adjustment came from the same data 

that we are fitting. A one-word descrip-

tion of this practice is “cheating!” What 

this exercise shows is that it is theoreti-

cally possible to adjust the premium so 

that the SCC obtains a better fit. 

So what about in practice? A com-

mon rationale for adjusting the premi-

um is the so-called underwriting cycle. 

There are 50 commercial auto triangles 

in the data used in my monograph. For 

each commerical auto auto-loss triangle, 

I adjusted the premium using an average 

ᾱ
w

 where the average was taken from the 

remaining 49 loss triangles in our data. 

The model comparison statistics for the 

illustrative triangle with this second ad-

justment are in the second row of Table 

3. They indicate that the unadjusted 

SCC model provides a better fit. When 

applied to the other commerical auto 

triangles in my monograph, I found that 

the unadjusted SCC fit better than the 

second adjusted SCC for 32 of the 50 loss 

triangles.
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SCC-Adj-1 67.09 9.59 -134.99

SCC-Adj-2 -7.73 9.25 15.45

My takeaway from this exercise is 

that while it is theoretically possible that 

some premium adjustment may save 

the stochastic Cape Cod, in practice it 

is going to be difficult. To any actuary 

considering a SCC-like model, I suggest 

also considering a CRC-like model. And, 

as I show in my monograph, there may 

be even better models. 

When revisiting the actuarial Cape 

Cod model, I brought with me some 

very powerful tools that allowed this 

significantly improved fit. My laptop 

computer is, by several orders of magni-

tude, more powerful than the computers 

available to those who developed the 

original Cape Cod model. This com-

puter power led to the development of 

the Bayesian MCMC technology, which 

produces the 29 x 10,000 array of param-

eters that computes our predictive distri-

bution of ultimate losses. It also needs a 

55 x 10,000 array of log-likelihoods that 

we use to evaluate the fit of the Bayes-

ian model. With all this technology, one 

would hope we could improve our loss 

reserving methodology, and I think we 

have done so. 

In spite of the powerful technology 

I used above, I found myself wonder-

ing why, with such an overwhelming 

difference, the actuarial profession had 

not noticed this problem before. Well, I 

have just attended the CLRS and found 

out that the problem has been noticed.  

See Spencer Gluck (1997). This paper al-

lowed the estimated expected loss ratio 

to vary by accident year as a weighted 

average of the loss ratios for nearby acci-

dent years. The “generalized Cape Cod” 

model put forth in that paper formed the 

basis of a session by Jon Sappington and 

Enbo Jiang.  This session showed how to 

use bootstrapping to calculate the vari-

ability of the estimates for the general-

ized Cape Cod model. 

I have not been back to the geo-

graphic Cape Cod since our original visit 

50 years ago. If I do revisit Cape Cod, 

I will insist on today’s modern conve-

niences. It would be a nice hotel with a 

swimming pool, cable TV, fine dining at 

restaurants and, of course, free Wi-Fi.
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