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1. Notation
Notation used to describe reserving methods vary from paper 

to paper, but, for the remainder of the article, the notation in 

table 1 will be used: 

Table 1: Notation

Notation Meaning 

w Accident year 

d Development year (age) 

t Calendar year 

c(w, d) Cumulative loss from accident year w at age d

q(w, d) Incremental loss from accident year w at age d

α
w 

Base value for accident year w 

ι
t 

Trend for calendar year t 

γ
d
 Trend for development age d

2. The Probabilistic Trend Family (PTF)
2.1. Barnett and Zehnwirth’s Idea

The use of generalized linear models in loss reserving is not 

new; many statistical models have been developed to fit the 

loss data gathered by various insurance companies. The 

most popular models belong to what Glen Barnett and Ben 

Zehnwirth in “Best Estimates for Reserves” call the “extended 

link ratio family (ELRF),” as they are developed from the chain 

ladder algorithm used by actuaries to estimate unpaid claims. 

Although these models are intuitive and easy to imple-

ment, they are nevertheless flawed because many of the 

assumptions behind the models do not hold true when fitted 

with real-world data. Even more problematic is that the ELRF 

cannot account for environmental changes like inflation that 

are often observed in the status quo. Barnett and Zehnwirth 

conclude that a new set of models that contain parameters 

for not only accident year and development period trends but 

also payment year trends would be a more accurate predictor 

of loss development. 

Called the “probabilistic trend family” in their paper, 

these models are designed to account for trends in not only 

the accident year and development year directions, but also 

the calendar/payment year direction. The general form of the 

model is as follows: 

log q(w,d)=aw
 +∑t-1

j=1
ι

j
 +∑d-1

k=1
γ

k
 (1)

Recall that q(w,d) denotes the incremental payment in 

accident year w and development age d, α
w 

 gives a “base 

value” for accident year w, ι
j
 represent calendar year trends, 

and γ
k
 stand for development year trends. 

This undergraduate thesis project applies the paper’s 

ideas to data gathered by Company XYZ. The data was fitted 

with an adapted version of Barnett and Zehnwirth’s new 

model in R, and a trend selection algorithm was developed 

to accompany the regression code. The final forecasts were 

compared to Company XYZ’s booked reserves to evaluate the 

predictive power of the model. 

2.2. Simple Example

To illustrate the process of estimating parameters for a model 

in the PTF family, we generated a simple example where the 

trends are easy to identify. Suppose we had an incremental 

loss triangle that had the following values on a log-scale: 

Table 2: Simulated log-transformed incremental loss triangle

Months Months Months Months

12 24 36 48

2015 1 2 3 6 

2016 2 3 6 

2017 3 6 

2018 6 

From the triangle, we can observe two calendar year 

trends. The first starts in calendar year 2015 and continues to 

calendar year 2017, increasing by one each year. The second 

starts in calendar year 2017 and ends in calendar year 2018, 

increasing by three each year. 
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Using the notation in Equation 1, the loss triangle would 

look as such: 

Table 3: Simulated log-transformed  
incremental loss triangle with notation

Months Months Months Months 

12 24 36 48

2015 1=α 2=α+ι
1

3=α+2ι
1
 6=α+2ι

1
+ι

2

2016 2=α+ι
1

3=α+2ι
1
 6=α+2ι

1
+ι

2

2017 3=α+2ι
1
 6=α+2ι

1
+ι

2

2018 6=α+2ι
1
+ι

2

We then can represent the value in each cell as follows: 

Table 4: Predictors and response variables for simulated example

Months # α # ι
1

# ι
2

log q(w, d)

12

1 0 0 1 

1 1 0 2

1 2 0 3 

1 2 1 6

24

1 1 0 2 

1 2 0 3 

1 2 1 6 

36
1 2 0 3 

1 2 1 6 

48 1 2 1 6 

From this table, we can see that this is a regression prob-

lem with three predictors and response. In other words, we 

can fit the data with the following equation: 

q^=α+ι
1
x

1
+ι

2
x

2
, (2)

where x
1
 and x

2
 denote the number of ι

1
 and ι

2
, respective-

ly. Performing the regression confirms that ι
1
 = 1 and ι

2
 = 3. 

2.3. Preliminary Problems and Potential Solutions

The previous example, while simple, illustrates the rationale 

behind the PTF as well as the process an analyst might take to 

estimate the parameters for a model in the family. However, 

when faced with real-world data, several complications arise. 

2.3.1. Incremental Values are Linear on a Log Scale

As Barnett and Zehnwirth note, “trends in the data on the 

original dollar scale are hard to deal with, since trends on that 

scale are not generally linear ... it is the logarithms of the incre-

mental data that show linear trends.”1 Thus, we would need to 

log-transform our incremental loss triangles before attempting 

to the fit the model. 

However, while cumulative payments are always positive, 

incremental payments can occasionally be negative values 

(especially near the tail). Since we cannot log-transform nega-

tive values, we would have to adjust our data to accommodate 

these values. Shapland describes three potential ways of doing 

so: 

• “Zero out” negative values. That is, if the incremental 

payment is negative, we assume that value is 0 after log-

transforming the remaining values.

• Replace the value with - log(-q(w, d)) instead of log(q(w, 

d)).

• Shift all the incremental values so that no negatives 

remain before taking the natural logarithm. After analysis, 

these values would need to be shifted back.

These adjustments can produce slightly different results 

and can be implemented in R. 

2.3.2 Selection of Trends Can Be Difficult

In the example above, we could determine by observing the 

original triangle that there were two calendar year trends 

affecting the payments. However, with real-world data, the 

location of these trends may be difficult to identify, especially 

if trends are present in all three directions. Again, there are 

several methods by which we can determine the trends: 

• By inspection. In Barnett and Zehnwirth’s example, 

the data was first fitted with a basic model in which the 

analyst assumed there was one trend in each direction. 

The residuals of this model were plotted against the de-

velopment year, accident year and calendar year indices, 

and trends were identified through these residual plots. 

Because the trends are found by inspecting these plots, 

this method can produce different results depending on 

the analyst. 

• By performing best subset selection (i.e., trying every 

combination). We could hypothetically fit the data with 

every possible combination of trends. This can be compu-

tationally difficult, however, especially for large triangles 

— for a triangle with m accident years and n development 

periods, there would be 2(m-1)+(n-1)+(max(n,m)-1) such combina-

tions. In our example, m = n = 20, so we would have to test 

1 Barnett, Glen, and Ben Zehnwirth, “Best Estimates for Reserves,” Proceedings of the Casualty Actuarial Society, 2000, Vol. 87, pp. 245–321.
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23(20-1) = 257 combinations. 

• By performing stepwise selection. This method would 

choose the combination of predictors that minimizes 

the Akaike Information Criterion (AIC). The AIC statistic 

rewards goodness of fit, but has a penalty for increasing 

the number of parameters. Thus, using the AIC to select 

trends can prevent overfitting.

In the example below, the third method is used. 

2.3.3. Projecting Calendar Year Trends

Finally, the purpose of this process is to arrive at estimates for 

ultimate losses. However, this requires developing estimates 

for losses in future calendar years, which may involve trends 

that we have not and cannot observe in the data. There are two 

ways to account for these trends: 

• Extend the most recent trend into the future. We can 

make the broad assumption that calendar year trends will 

remain unchanged and extend the most recent trend to 

apply to future calendar years. 

• Assign future calendar year trends based on external re-

search. This can be complicated, however, as some of the 

calendar year trends may be absorbed by development 

year and accident year trends.

This project uses the first method to ac-

count for future calendar year trends. 

3. Fitting Real-World Data to 
PTF Models
3.1. The Data

With this methodology in mind, we then 

proceeded to use the probabilistic trend 

family to estimate ultimate losses for a line 

of business. We were given a cumulative 

incurred losses triangle from Company XYZ 

for a long-tailed line, and we also were given 

their booked reserves as of December 31, 

2016, and December 31, 2017. This informa-

tion not only allows us to use regression to 

arrive at ultimate losses but also gives us an 

example to compare our final results against 

as of December 31, 2016, and December 31, 

2017. 

The dataset we were given was par-

ticularly interesting because the company 

had experienced what was functionally a change in claims 

handling procedures in 2015. Assuming that this calendar year 

effect was significant, our model should be able to account for 

the effect it had on loss development. 

Because the procedure described in section 2.2 above 

can be time- and labor-intensive, we developed two functions 

in R that can perform the analysis automatically. These two 

functions are not shown here, but they automate the afore-

mentioned process, performing stepwise selection to choose 

cutpoints for the trends and selecting the trends with a gener-

alized linear model. 

3.2. Evaluating the Results

Figure 1 shows the resulting comparisons. Because we know 

what the booked reserves for Company XYZ were as of both 

December 31, 2016, and December 31, 2017, we were able to 

compare our ultimate losses to both estimates and see how 

the differences changed over time. In both figures, numbers 

are given in thousands, and differences of greater than three 

million are highlighted. As the figure shows, our model gener-

ally predicts higher ultimate losses than the booked reserves. 

Notice that the differences between the ultimate loss 

Figure 1: Comparison of the model’s predicted ultimate losses using a full triangle against 
Company XYZ’s booked reserves as of year-end 2016 and 2017. Numbers shown in thou-
sands. Differences of over 3 million are highlighted. 

Full Triangle

Incurred 

Year

Model 

Ult 2016 Ult Diff 2017 Ult Diff

Change 

in Diff

2005 50,776 49,397 1,379 49,256 1,520 141

2006 52,697 52,081 616 51,902 795 179

2007 55,679 57,900 (2,221) 57,565 (1,886) 335

2008 53,914 52,840 1,074 52,781 1,133 59

2009 59,402 58,449 953 58,876 526 (427)

2010 48,218 46,260 1,958 45,090 3,128 1,170

2011 40,125 37,598 2,527 37,305 2,820 293

2012 45,703 42,798 2,905 40,916 4,787 1,882

2013 53,135 49,801 3,334 47,895 5,240 1,906

2014 71,277 62,001 9,276 66,575 4,702 (4,574)

2015 61,729 54,329 7,400 59,405 2,324 (5,076)

2016 59,027 56,704 2,323 56,378 2,649 326

Tot Abs Diff 35,967 Tot Abs Diff 31,511 (4,456)

Avg Abs Diff 2,997 Avg Abs Diff 2,626 (371)

 DY = 2, 3, 7, 8, 9  CY = NA  

 AY = 9, 10, 11  AIC = 307.848  
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estimates for accident years 2013-2016 were particularly large. 

This coincides with the period in which the company was 

experiencing changes in claims handling procedures, and may 

indicate that Company XYZ’s method of compensating for 

those changes could be improved. 

4. Conclusion
Using models from the probabilistic trend family (PTF) to pre-

dict ultimate losses is an alternative method for reserving that 

bears exploring. The probabilistic trend family improves upon 

traditional reserving methods by not only overcoming issues 

with models in the extended link ratio family but also offering 

a statistically rigorous way to select trends. 

The method described in this paper is one way by which a 

company can generate a model from the PTF to fit its loss data. 

Further testing over time would be necessary to judge the pre-

dictive power of the model, but the ultimate losses predicted 

by the model can nevertheless offer insights about what the 

booked reserves of a particular line of business should look 

like. ●
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