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EXPLORATIONS BY GLENN MEYERS

Bayesian Model Selection 

A 
common complaint I hear from 

classically trained statisticians 

when I discuss loss reserve mod-

els is that we should be careful of 

overfitting. As I have been writ-

ing about fitting models with over 30 pa-

rameters to a 10 x 10 loss triangle (with 

55 observations), I must admit that, at 

least on the surface, this sounds pretty 

bad. My response has always been that 

if there were a loss reserve model with a 

small number of parameters “out there,” 

someone would have found it by now. 

We need to deal with models with a 

large number of parameters.

I was drawn to Bayesian MCMC 

modeling because it is well equipped 

to handle these situations. Given a 

“sensible” model, it is possible to get a 

statistically valid predictive distribution 

of outcomes for any number of param-

eters. In fact, that is what I have done in 

my monograph Stochastic Loss Reserving 

with Bayesian MCMC Models1 where 

I successfully validated stochastic loss 

reserve models on the holdout lower 

triangle data.

While a model’s successful valida-

tion on 10-year-old data should be a 

consideration in deciding which model 

to use, I have been hearing from actuar-

ies who are considering Bayesian MCMC 

models with fewer parameters on cur-

rent data. This article discusses how to 

compare the performance of alternative 

Bayesian MCMC models on current data 

while taking the number of parameters 

into account.

Let’s start the discussion with a re-

view of the Akaike Information Criteria 

(AIC).

Suppose that we have a model with 

a data vector, x = {xn
}Nn-1 and a parameter 

vector θ with p parameters. Let θ
^
 be the 

parameter value that maximizes the 

likelihood, L, of the data x. Then the AIC 

is defined as

AIC = 2⋅p-2⋅∑
N

n-1
log(L(x

n
|θ

^
)).

 Given a choice of models, the 

model with the lowest AIC is usually 

preferred. This statistic rewards a model 

for having a high log-likelihood, but it 

penalizes the model for having more 

parameters.

There are problems with the AIC in 

a Bayesian MCMC environment. Instead 

of a single maximum likelihood estimate 

of the parameter vector, there is an en-

tire sample, {θ
s
}Ss-1  of parameter vectors 

taken from the model’s posterior distri-

bution. There is also the sense that the 

penalty for the number of parameters 

should not be as great in the presence 

of the parameters’ informative priors or 

hierarchical structures or both.

To address these concerns, Gel-

man et al. describe a statistic, called the 

Watanabe-Akaike Information Criterion 

(WAIC) that generalizes the AIC in a way 

that is appropriate for Bayesian MCMC 

models.2

1 http://www.casact.org/pubs/monographs/index.cfm?fa=meyers-monograph01 
2 Gelman, Carlin, Stern, Denson, Vehtari and Rubin. Bayesian Data Analysis – Third Edition. CRC Press, Ch. 7.

First define the computed log point-

wise predictive density as 

L
WAIC

 = ∑
N

n-1
log( 1

S
∑
S

s-1
L(x

n
|θ

s
)).

The L
WAIC

 statistic replaces  

∑
N

n-1
log(L(x

n
|θ

^
)) in the expression for the 

AIC with the log of the average likeli-

hood taken over the sample from the 

posterior distribution.

Next, define the effective number of 

parameters p
WAIC

 as 

p
WAIC

 = ∑
N

n-1
Var

n
[log(L(x

n
|θ

s
))].

p
WAIC

 has the property that it de-

creases with the tightness of the prior 

distribution. For a normal linear model 

with large sample size, known variance 
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and uniform prior distribution of the 

coefficients, p
WAIC

 is approximately equal 

to p. 

The final expression for the WAIC is 

analogous to that of the AIC and is given 

by 

 WAIC = 2⋅ p
WAIC

– 2⋅ L
WAIC

.

As with the AIC, the model with the 

lower WAIC is preferred. 

Let’s now show this calculation on 

the Changing Settlement Rate (CSR) 

model using the loss triangle in Table 1.

 The CSR model is defined as fol-

lows:

1. logelr ~ Uniform(-1, 0.5).

2. β
d
 ~ Uniform(-5, 5) for d = 1, … ,9. 

β
10

 = 0.

3. γ ~ Normal(0, 0.05).

4. α
w

 ~ Normal(log(Premium
w

) + 

logelr,√10 ) for w = 1, …, 10.

5. σ2
d = ∑

10

i=d
a

i
 , a

i
 ~ Uniform(0, 1). 

6. log(C
wd

) ~ Normal(a
w

 + β
d
(1 – γ)w-1, 

σ
d
)

Let’s consider two simplifications 

to the model. The first simplification 

is to fix the settlement rate, γ =0. The 

second simplification is the set α
w

 = 

log(Premium
w

) + logelr. Let’s call the 

model with only the first simplification 

the Zero Settlement Rate (ZSR) model, 

and model with both simplifications the 

Stochastic Cape Cod (SCC) model as it 

forces the expected loss ratio to be the 

same for all accident years. The nomi-

nal number of parameters for the three 

models is 31, 30 and 20, respectively.

I then took a sample of size 10,000 

from the posterior distribution of pa-

rameters for each of the models using 

Bayesian MCMC. Table 2 shows some 

summary statistics for the predictive 

distributions of the outcomes. The p
WAIC

, 

L
WAIC

 and WAIC statistics are also given.

Subject to simulation error, we 

expect to see lower values of the log of 

the average likelihood, L
WAIC

, for simpler 

models. We should also expect to see 

lower values of the effective number of 

parameters, p
WAIC

, for simpler models. 

The model that is preferred depends 

upon the difference between the two 

statistics. 

For this example, the CSR model 

(with a posterior mean γ = 0.03) is the 

preferred model. Behind it is the ZSR 

model, and way behind it is the SCC 

model. I have run these models on other 

insurers and found that, on some occa-

sions, the ZSR is the preferred model.

The R scripts that produced these 

results are posted on the CAS website. 

Model changes were implemented by 

short modifications of the JAGS script 

that can be activated or removed by us-

ing comments. ●

Table 1 - Group 620 - Commercial Auto

AY Premium DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10

1  30,224  4,381  9,502  15,155  18,892  20,945  21,350  21,721  21,934  21,959  21,960 

2  35,778  5,456  9,887  13,338  17,505  20,180  20,977  21,855  21,877  21,912 

3  42,257  7,083  15,211  21,091  27,688  28,725  29,394  29,541  29,580 

4  47,171  9,800  17,607  23,399  29,918  32,131  33,483  33,686 

5  53,546  8,793  19,188  26,738  31,572  34,218  35,170 

6  58,004  9,586  18,297  25,998  31,635  33,760 

7  64,119  11,618  22,293  33,535  39,252 

8  68,613  12,402  27,913  39,139 

9  74,552  15,095  27,810 

10  78,855  16,361 

Table 2 - Summary - Predictive Distributions of the Outcomes

Model  Estimate  Std. Dev.  LWAIC  pWAIC  WAIC 

CSR  383,355  19,706  94.6  13.3 -162.61

ZSR  413,667  17,606  90.2  12.6 -155.24

SCC  402,803  22,629  40.8  8.0 -65.65


