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EXPLORATIONS BY DAVE CLARK

Estimation of Inverse Power Parameters via GLM

R
ichard Sherman’s 1984 paper 

“Extrapolating, Smoothing and 

Interpolating Development Fac-

tors” provided a number of useful 

ideas for working with develop-

ment patterns and remains a useful 

resource. The CAS’s 2013 Tail Factor 

Working Party found that the Sherman 

curve fit “enjoys fairly broad acceptance 

both with consulting firms and insur-

ance companies.”

In Variance, Volume 9, Number 

2, Jon Evans has two new papers that 

extend the ideas of Sherman’s original 

paper and show its continued relevance.

The great value of the original Sher-

man paper is in identifying a curve form 

that closely fits the sequence of age-to-

age (ATA) factors for long-tailed casualty 

lines. The most basic form is the “inverse 

power” curve of the following form:

ATAt
  = 1+a∙t-b.

In this form, the t represents the de-

velopment time such that, for example, 

ATA
12 

represents the age-to-age factor or 

link ratio from age 12 months to age 24 

months. A modest expansion of this for-

mula allows a shift term, c, to be added 

to the time index, though we will ignore 

this for the present discussion:

ATA
t
  = 1+a∙(t+c)-b.

The parameters of the inverse pow-

er curve are most frequently estimated 

by rearranging the formula into a (log)

linear form and then applying ordinary 

least squares formulas for the intercept 

and slope:

ln(ATA
t
-1)=ln(a)+b∙ln(1/t).

The attraction of this log-linear 

form is that simple, closed-form solu-

tions can produce the estimated model 

parameters. Anyone with a spreadsheet 

can apply the method with little techni-

cal knowledge.

Further, the inverse power curve 

can easily be compared with alterna-

tive fitted curves. Sherman gives several 

examples, with the exponential decay 

formula being perhaps most familiar:

ATA
t
  = 1+a∙e-b∙t.

The exponential decay formula 

can be calculated in a similar log-linear 

form, so that we quickly have alternative 

fitted curves to compare to our develop-

ment data:

ln(ATA
t
-1)=ln(a)-b∙t.

While the mathematical simplic-

ity of the log-linear form is appealing, it 

creates difficulties in practice. The dif-

ficulties were noted in the discussion of 

Sherman’s paper by Lowe and Mohrman 

(1985). The first difficulty is that the 

log-transform ln(ATA
t
-1) requires that 

every ATA factor used in the fit be strictly 

greater than 1.000. There can be no “neg-

ative development” in the actual data, 

and even factors that are only slightly 

greater than 1.000 can cause distortions 

in the fit.

A second problem is that the log-

transformed data is a bit more difficult 

to interpret or explain to the audience 

receiving the results of the analysis. 

An age-to-age factor of 1.010 is easily 

interpreted as a 1 percent increase in 

loss dollars, but what does ln(.01)=-4.605 

represent? How do we interpret the 

-4.605 for our client or explain why we 

want a fitted line that closely matches 

this value?

Both of these difficulties are over-

come when we instead approach the 

parameter estimation using generalized 

linear models (GLM). We can still use 

the “inverse power” form that fits the 

insurance patterns so well, but make use 

of a better technique for the parameter 

estimation.

The key idea in GLM is that we 

include a “link function” g() but apply 

it in inverse form g-1 () to the linear 

combination of the predictor variable(s). 

Rather than apply a log-transform to the 

quantity (ATA
t
-1), we use an exponential 

transform on the linear function.

ATA
t
-1 = exp(β

0
+β

1
∙ln(t))  = μ

t
  

a=exp(β
0
) b=-β

1

Using this “log-link” on the right 

side of the equation rather than applied 

to the response variable, we avoid any 

problem with actual negative develop-

ment. Expected development must still 

be positive but the actual values being 

fit need not be. In short, a log-link GLM 

can handle negative development in the 

data where a log-linear regression can-

not. The GLM approach is more robust.

With the log-link, the “canonical” 

variance structure is the quasi-Poisson 

or over-dispersed Poisson (ODP) model. 

The ODP model assumes that the vari-

ance is proportional to the expected 

value.

The GLM application follows a 

Poisson quasi-loglikelihood (QLL). 

The prefix quasi means that we are not 

explicitly assuming a distribution but 
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rather only assuming that the variance is 

proportional to the variance of the Pois-

son distribution. 

The reader is referred to the 1974 

Wedderburn paper for a more complete 

description of quasi-likelihoods.

For our application the Poisson QLL 

is given below:

QLL = ∑w
t
∙[(ATA

t
-1)∙ln(μ

t
 )-μ

t
 ].

The function allows weights w
t
 to be 

included as part of the fitting procedure. 

Since we typically use dollar-weighted 

average ATA factors, the weights are 

naturally set as the sum of the dollars in 

the column used in the denominator of 

the ATA calculation

ATA
t
=

∑n-t
i=1

C
i,t+1 w

t

n-t

i=1
∑C

i,t 
.

∑n-t
i=1

C
i,t

The QLL can be maximized with the 

“best” parameters β
0
 and β

1
 using avail-

able software. The glimmix procedure 

in SAS will perform the calculation. The 

glm.fit function in R can also be used 

but requires a fix to allow negative values 

(see the code by David Firth in the refer-

ences). More conveniently, a simple 

iterative routine can be built into a VB 

function within an Excel spreadsheet (or 

even — gasp — using Excel’s “Solver”).

The estimating equations for find-

ing the best model parameters are easily 

derived:

∑w
t
∙(ATA

t
-1) = ∑w

t
∙(ATA

t
-1)

∑w
t
∙(ATA

t
-1)∙ln(t) = ∑w

t
∙(ATA

t
-1)∙ln(t).

From these estimating equations, 

we see that GLM estimation is work-

ing with the original dollars from the 

development triangle, and that the fitted 

values balance to the actual dollars. 

There is no difficulty when some actual 

development is negative and no diffi-

culty in interpreting what is being fit.

The GLM can also be expanded for 

other transforms of the development 

time index. Instead of the logarithmic 

transform that creates the inverse power 

curve, we can use the time index directly 

to be equivalent to the exponential 

decay curve.

If the inverse power curve is too 

thick-tailed and the exponential decay 

is too thin-tailed, then other transforms 

are possible. An intermediate form is to 

use the square root of the development 

time.

As with the original Sherman paper, 

these various transforms of the time 

index represent variations on the same 

basic model. Using the log-link GLM 

form simply gives us a more robust 

method for estimating parameters for 

the model. ●

David R. Clark, FCAS, MAAA, works 

for Munich Reinsurance as part of the 

actuarial research and modeling team in 

Princeton, New Jersey.
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