It's a Puzzlement by Jon Evans

Proof Outline for "More Refined Pricing"

- 1. Consider the space U of all functions $f: Z^d \to R^+$ that are equal to the average of their 2d nearest neighbors at all points in Z^d . Let e_i be the vector in Z^d that has value +1 in the ith coordinate, where $i=1,\ldots,d$ and value 0 in all other coordinates.
- 2. When X and Y are nearest neighbors in Z^d , $f(Y) \le 2d$ f(X). This inequality generalizes to $f(Y) \le (2d)^L f(0)$, where it is possible move from X to Y with L number of steps in the lattice. That is the number of $\pm e_i$ vectors that must be added to form Y X.
- 3. Let X_t , $t = 0, ..., +\infty$ be a random walk starting the origin with $X_0 = (0, ..., 0)$ with $X_{t+1} = X_{t+1} \pm e_i$, where each of the 2d possible values for $\pm e_i$ is equally likely. $E[f(X_{t+1})|X_t] = f(X_t)$ due to the harmonic constraint, and by induction $E[f(X_t)] = f(X_0)$, and also note that $E[f(X_t)^2] \le (2d)^{2t} f(X_0)^2$ since $f(X_{t+1})^2 \le (2d)^{2t} f(X_0)^2$
- 4. Let *T* be the non-negative integer valued random variable with density $P[T = t] = 2^{-3t-1}d^{-2t}$
- 5. $E[f(X_T)^2] \le f(X_0)^2 \sum_{t=1}^{\infty} 2^{-t} = f(X_0)^2$ and $p(Y) = P[X_T = Y] > 0$ for any $Y \in \mathbb{Z}^d$,
- 6. Let $\|f\|_2 = E[f(X_T)^2]^{1/2} = (\sum_{Y \in Z^d} p(Y) f(Y)^2)^{1/2}$, and note that this forms a metric where $d(f,g) = \|f-g\|_2$. Let $V = \{f|f \in U \cap f(X_0) = 1\}$. Note, topologically V can be thought of as a subset of a compact space W that is homeomorphic to a countably infinite cartesian product of the closed interval [0,1] since there is a maximum and minimum bound for any $f \in V$ at each point $X \in Z^d$.
- 7. Now we can find a specific $\bar{f} \in V$ so as to maximize $\|\bar{f}\|_2$. A sequence f_n where $\|f_n\|_2$ converges to the least upper bound of $\|f\|_2$ must exist and compactness of W ensures that there is a subsequence of these functions that also converges to a specific function $\bar{f} \in W$. This function \bar{f} must also be harmonic since the subsequence must converge pointwise and similarly it must also have value 1 at the origin X_0 . Everywhere $\bar{f} > 0$

- 0, since if f(X) = 0 for any point $X \in \mathbb{Z}^d$, it would have to be that f(X) = 0 for all points $X \in \mathbb{Z}^d$. Therefore $\bar{f} \in V$.
- 8. Consider that $\bar{f}(X) = \sum_{\pm,i} \left(\frac{f(X_0 \pm e_i)}{2d}\right) f_i^{\pm}(X)$ where $f_i^{\pm}(X) = \left(\frac{\bar{f}(X_1 \pm e_i)}{\bar{f}(X_0 \pm e_i)}\right)$. Note $f_i^{\pm} \in V$ and in particular $\bar{f}(X_0) = \frac{\bar{f}(X_0 \pm e_i)}{\bar{f}(X_0 \pm e_i)} = 1$ implies that $\sum_{\pm,i} \left(\frac{\bar{f}(X_0 \pm e_i)}{2d}\right) = 1$. So $\|\bar{f}\|_2 \ge \|f_i^{\pm}\|_2$ and at the same time $\|\bar{f}\|_2 \le \sum_{\pm,i} \left(\frac{f(X_0 \pm e_i)}{2d}\right) \|f_i^{\pm}\|_2$. So, it must be that $\|\bar{f}\|_2 = \sum_{\pm,i} \left(\frac{f(X_0 \pm e_i)}{2d}\right) \|f_i^{\pm}\|_2$, but this can only be the case if $f_i^{\pm} = C_i^{\pm}\bar{f}$, for some constants $C_i^{\pm} > 0$.
- 9. $f_i^+ = C_i^+ \bar{f}$ implies that $\bar{f}(X + e_i) = K_i \bar{f}(X)$ for some constants $K_i > 0$ and in turn that $\bar{f}(X e_i) = \bar{f}(X)/K_i$. Restating the harmonic constraint $\bar{f}(X) = \frac{1}{2d} \sum_i (K_i + 1/K_i) \bar{f}(X)$. So $\frac{1}{2d} \sum_i (K_i + 1/K_i) = 1$. $K_i + 1/K_i$ has a minimum value of 2 only when $K_i = 1$, and these are the only values for K_i that satisfy the previous equation. Consequently $\bar{f}(X \pm e_i) = \bar{f}(X)$ and by induction this implies that $\bar{f}(X) = \bar{f}(X_0) = 1$, a constant function.
- 10. In general, for $g \in U$, we can create a corresponding $\bar{g} \in V$ as $\bar{g}(X) = \frac{g(X)}{g(X_0)}$. Now, $\|\bar{g} 1\|_2^2 = \|\bar{g}\|_2^2 1 \ge 0$ but at the same time time $\|\bar{g}\|_2^2 \le \|\bar{f}\|_2^2 = 1$. So, $\|\bar{g}\|_2^2 = 1$ and consequently $\|\bar{g} 1\|_2^2 = 0$, but this can only happen if $\bar{g} = 1$, a constant function. Therefore, $g(X) = g(X_0)$, a constant function.